DERIVATA E DIFFERENZIALE

NOTA
del Socio
GIUSEPPE PEANO

TORINO
Libreria FRATELLI BOCCA
Via Carlo Alberto, 8
1912
I trattati moderni di analisi infinitesimale sogliono definire la derivata d'una funzione come il limite del rapporto incrementale. Poi definiscono il differenziale della funzione quale il prodotto della sua derivata pel differenziale della variabile indipendente. Questo poi, si definisce come una quantità arbitraria, costante o variabile, o come un incremento della variabile, finito o infinitesimo; e l'infinitesimo è variamente trattato. Alcuni autori, quali Todhunter, Veblen, considerano il \(\frac{dy}{dx} \) come un simbolo per indicare la derivata, e indecomponibile negli elementi \(dy \) e \(dx \).

La cosa diventa molto più chiara, se si definisce il differenziale come sinonimo di derivata. L'identità fra differenziale e derivata sarà qui chiarita con argomenti logici e storici.

Il lettore, che desideri verificare i brevi testi dei vari autori, che qui saranno riprodotti, potrà, se gli è comodo, consultare il *Formulario mathematico*, da me edito; e il cui tomo V, 1906-08, citò all'abbreviazione (Formul.). Sarà bene ricordare che le citazioni storiche ivi contenute furono quasi tutte raccolte dal Dr. Gio. Vacci, già assistente di Calcolo infinitesimale presso la R. Università di Torino. Egli pure mi coadiuvò validamente nella riduzione in simboli dei teoremi di Calcolo infinitesimale.

L'argomento logico molto semplice, è che dovunque sta scritto differenziale, si può leggere derivata, e la verità della proposizione rimane.

Ad esempio, prendendo una delle formule scritte da Leibniz nel 1677, è riprodotta nella celebre memoria *Nova methodas pro maximis et minimis*, Acta erud. 1684:

\[
\frac{d}{dx} \frac{1}{x} = -\frac{dx}{x^2}.
\]
Essa si può leggere: * la derivata di 1 vale meno la derivata di x, divisa per x². Si suppone implicitamente che x sia funzione d'una variabile.

La formula, ove \(u = f(x, y, z) \):

\[
du = f_x' dx + f_y' dy + f_z' dz,
\]

che nei libri moderni si suol dare come definizione del differenziale totale, si può leggere: * la derivata di u è la somma dei prodotti delle derivate parziali di f per le derivate delle funzioni x, y, z. Questa proposizione si suol dare come teorema, o regola per derivare le funzioni composte.

L'espressione \(\frac{dy}{dx} \), che si suol interpretare come un simbolo per dire * derivata di y rispetto a x, si può leggere: * derivata di y divisa per la derivata di x.

La \(\frac{dy}{dx} \), che si suol leggere: * derivata seconda di y rispetto ad x, si può anche leggere: * derivata seconda di y divisa per il quadrato della derivata prima di x, supposto che la x vari uniformemente. Questa ipotesi del moto uniforme di x, ossia che la derivata di x sia costante, è sempre espressa ai tempi di Bernoulli, Taylor, MacLaurin (Formul. pag. 304); solo nei tempi moderni essa condizione si tace.

Del differenziale sotto il segno integrale parlerò fra breve. Risulta che i differenziali sono derivate di funzioni, la variabile indipendente è quasi sempre indeterminata, cioè può essere qualunque. Però, benché raramente, troviamo negli scritti di Leibniz (Formul. pag. 277):

\[
dx^2 = 2x, \quad dx^3 = 3x^2.
\]

ove, senza alcun dubbio, il simbolo d di Leibniz, e che egli chiamerà * differenziata, è la nostra derivata.

Formule non omogenee nei differenziali, e in cui quindi differenziale significa la moderna derivata, e non semplicemente quantità proporzionale alla derivata, si incontrano ancora in Condorcet, * Miscellanea Taurinensia*, t. IV, anno 1766-69.

Newton, nel suo celebre libro * Philosophiae naturalis prin-

cipia mathematica. Di cui la prima edizione è del 1686, parla di * fluentes e fluxiones, che si sogliono ora tradurre in funzione e derivata; la fluxione è l' * ultima ratio, degli incrementi delle variabili. In quel libro non c'è alcun simbolo per indicare la derivazione; solo posteriormente egli scrisse un punto sulla variabile per indicarne la fluxione. Ma l'identità fra il dx di Leibniz e x di Newton, e delle rispettive scuole, fu affermata dai loro successori.

Così lo sviluppo in serie di potenze, mediante le derivate successive, fu data da J. Bernoulli nel 1694, e da Taylor nel 1715; e dalla seconda si passa alla prima leggendo d al posto del punto. Sicché ben a ragione il Bernoulli protestò che la serie di Taylor è la sua * sub ailo tantum characterum habitu.

La identità fra differenziale e fluxione, è affermata da Mac Laurin, * A treatise of fluxions. 1714 *, § 723, pag. 591:

* The symbol x or dx expresses the fluxion of x *

Lesser e Jacquier, editori e commentatori dei * Principia, di Newton, nel 1790, nota 158, affermano parimente:

* Fluxiones secundae designantur sic \(\dot{x}, \ddot{x}, \zeta, \) vel \(ddx, ddy, ddx \).

Adunque era opinione generale, ai tempi di Leibniz e Newton, e loro successori immediati, che vi fosse identità fra il differenziale dz, e la fluxione x, e siccome si ritiene ora che la fluxione di Newton sia la derivata attuale, così per un secolo il differenziale fu sinonimo dell'attuale derivata.

Un metodo per riconoscere l'identità o meno fra differenziale, fluxione, e derivata è di ricorrere alle definizioni loro. Ma questo metodo non è applicabile: perché la derivata si presenta come un elemento geometrico, tangente ad una curva, o meccanico, velocità d'un punto.

Gli autori espressero questo concetto mediante altre frasi, come rapporto di quantità infinitesime, o * ultima ratio*, o momento; ma la definizione aritmetica di derivata non si trova nè in Leibniz, nè in Newton, nè in Euler: e questa lacuna era universalmente avvertita.

Per esempio, Newton, dopo considerato l'ultima ragione di due grandezze evanescenti, dice * Objectio est, quod quanti-
tatuum evanescentium nulla est ultima proportio; quippe quae antequam evanuerunt, non est ultima; ubi evanuerunt, nulla est. Che si può tradurre "alcuni definiscono la tangente ad una curva, come la retta che unisce due punti coincidenti, o consecutivi, o infinitamente prossimi della curva; ma si può obiettare, che questa retta non esiste; poiché finché i due punti sono distinti, la retta non è ancora la tangente; e quando i due punti coincidono, la retta non è più determinata." Newton risponde all'obiezione con ragioni tratte dalla meccanica-fisica; i concetti considerati non sono ancora espressi colla matematica pura.

Lagrange, nella *Théorie des fonctions analytiques*, dégagée de toute considération d'infiniment petits, d'évanouissans, de limites ou de fluxions, pubblicata nel 1797, crede di liberarsi di questi concetti mal definiti, come infinitesimi, e limiti. Perché la parola *limite*, al pari di *infinitesimo*, e *ultima ragione*, di *valor vero* d'un rapporto che si presenta sotto la forma \(\frac{0}{0} \), era una delle tante forme per nascondere la difficoltà.

Lagrange definì derivata di \(f(x) \), quale il coefficiente di \(h \) nello sviluppo di \(f(x + h) \) secondo le potenze di \(h \). Ma questo sviluppo in serie:

\[
f(x + h) = fx + fh + ... \]

non si può interpretare nel senso che la serie nel secondo membro sia convergente, ed abbia per somma il primo. Questo modo di interpretare la serie, troppo stretto, è posteriore a Lagrange; si trova in Cauchy, e duro fino agli ultimissimi tempi. Quella serie si deve interpretare come un modo abbreviato per indicare una successione di limiti. Io ho dato quest'interpretazione più lata della serie di potenze, o serie di Taylor, nel 1884 (Formul. pag. 229); Poicaré nel 1886 la chiamò serie asintotica. In sostanza, la formula precedente significa:

\[
\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = f'(x),
\]

sicché la *limite*, di cui Lagrange si voleva *dégager*, comparisce da un'altra parte.

Si noti che Lagrange scrive sempre \(f(x), f'(x), f''(x) \) colle parentesi. Il Serret, che curò la 4° edizione del 1881, alterò le formule di Lagrange; sono fedelli la 2° ed. del 1813 e la 3° del 1847.

La definizione, mediante sole idee di matematica pura, del *limite*, o espressioni equivalenti, infinitesimo, valore ultimo, differenziale, somma di infinito quantità, ecc., cercata durante più secoli, fu enunciata solo da una quarantina di anni (Formul. pag. 232).

La definizione di limite involve idee matematiche semplissime, unite a idee logiche: * Data una prima quantità, se ne può determinare una seconda, in modo che comunque si prenda una terza quantità, si abbia mod (\(y - a \)) \(< \delta \) *.

La prima, seconda e terza quantità, o variabili, debbono essere rispettivamente accompagnate dai segni logici \(\exists \) (si deduce), \(\exists! \) (esiste), e \(\exists \). Ogni spostamento di queste tre relazioni logiche \(\exists, \exists!, \exists \), rende falsa la definizione. E pare che vi sia molta difficoltà a intendere la successione di tre delle relazioni logiche, servendoci del linguaggio comune. La definizione di limite, di continuità equabile, di convergenza equabile, contengono la successione di relazioni logiche \(\exists, \exists!, \exists \); e sono scoperte dell'ultimo mezzo secolo.

E noto che le successioni \(\exists! \) e \(\exists \) si riducono rispettivamente \(\exists \) e \(\exists \).

Le lettere \(x, y, z \), di cui si considerano i differenziali \(dx, dy, dz \), o fisioni \(x, y, z \), non indicano numeri, ma bensì indicano funzioni, il cui valore è un numero.

Nel Formulario, è scritto \(\exists \) invece di * numero, o quantità*, reale \(\exists \). Sulle lettere \(x, y, z \), di cui parliamo, non bisogna fare le ipotesi \(x \neq y, y \neq \epsilon, \epsilon \neq \epsilon \); ma bisogna farne un'altra che spiegoerà.

Nelle scrittura \(\log x, \sin x, \log \sin x, \log \sin \) etc., in generale \(f \), la \(x \) è il valore della variabile, \(\log, \sin, ... \) è detto *segno* o caratteristica della funzione \(; \); e sin 0, sin 1, sin \(x, f \), 1, \(f \) sono i valori della funzione corrispondenti ai valori 0, 1, x della variabile (*).
Secondo questa nomenclatura, che si incontra in Lagrange, la parola \textit{funzione} isolata, non ha più ragione di essere; ma si hanno a considerare solo il carattere della funzione, e il valore della funzione. Alla parola \textit{funzione} darò il valore di carattere della funzione, e quindi in \(\log x \), \(\log z \) è la funzione, e \(\log x \) è il valore della funzione corrispondente al numero \(x \). Per prendere un esempio più volgare, nell'espressione padre di Pietro, la prima parte, padre di, indica la funzione o corrispondenza, o termine relativo; e tutta l'espressione ci dice il valore della funzione.

I trattati di analisi solevano, e molti ancora sogliono distinguere le quantità in costanti \(a, b, \ldots \), e variabili \(x, y, \ldots \). Ma questa distinzione non ha senso; perché ogni lettera dell'alfabeto ha lo stesso valore, cioè un valore costante, in tutta la formula; ed ha un valore variabile da formula a formula. Così nella formula

\[a, b \epsilon Q \cdot \cdot \cdot (a + b)^2 = a^2 + 2ab + b^2, \]

la \(a \) indica lo stesso valore nell'ipotesi \(a \) è una quantità, e nei due membri dell'identità.

La proposizione precedente rimane vera sia che si legga semplicemente \(a \) è \(b \) sono quantità, ovvero \(a \) e \(b \) sono quantità costanti, o \(a \) e \(b \) sono quantità variabili.

Farimenti la frase \(a \) una quantità data, determinata, \(f(a) \) significa \(a \) una quantità non data, indeterminata, variabile; perciò sempre invece della prima espressione si può usare la seconda, e la verità della proposizione rimane. Questi aggettivi costante, fisso, dato, sono in generale, in matematica, dei pleonasmi.

Italia, ove si è modernizzato il latino \textit{sinus} in \textit{sen}. E quest'uso italiano è anche contrario all'etimologia; invece sono italiani non ha il valore del latino-matematico \textit{sinus}. È noto che Ptolomeo calcolò le corde degli archi da 0° a 180°; e tuttora ne possediamo la tavola. L'astronomo arabo Al Battani, nell'870, piegò la corda in due, e chiamò \textit{gib} la metà della corda; e questa parola araba vale francese \textit{pli}, italiano \textit{piega}. I matematici europei, nel 1500, tradussero l'arabo \textit{gib}, nel latino \textit{sinus}, che in latino classico ha il valore di \textit{piega}. Così Virgilio \(\text{a} \) nuda gens, nodeque sinus collecta fluent, vuoò dire che Venere si presenta a Enea, nuda il ginocchio, e raccolta le fluenti pieghe della veste.

Alcune volte le parole \textit{costante} o \textit{variabile} hanno valore relativo; cioè si può dire che \(y \) è quantità variabile con \(x \); ma allora \(y \) non è una quantità, non è vero che \(y e x \); bensì \(y \) appartiene alla categoria delle funzioni.

Molti trattati definiscono la funzione (e così scritti anch'io):
\[\text{dicesi che } y \text{ è funzione di } x \text{ se ad ogni valore di } x \text{ corrisponde un valore di } y. \]
Ma qui si definisce la parola \textit{funzione} mediante la parola \textit{corrispondenza}, che non è stata prima definita. Il circolo d'oggi si può celare all'altro, dicendo che \(y \) per ogni \(x \) risulta determinato \(y \); per ogni \(x \) si ha il valore di \(y \); poiché il termine \textit{funzione} è espresso mediante \textit{determinazione}; ovvero è espresso da elementi grammaticali \(per, si ha \). L'idea espressa dalla parola \textit{funzione}, o dai suoi sinonimi \textit{operazione, corrispondenza, relazione}, appartiene alla logica pura. Come essa si possa esprimere mediante le idee primitive della logica, si può vedere nel Formulario mathematico, ovvero nel grande libro di Russell e Whitehead, \textit{Principia mathematica}.

Nel Formulario, col simbolo \(f u, ove u e v \) sono classi, si intende \(f \text{ funzione che ad ogni } u \text{ fa corrispondere un } v . \) La proprietà fondamentale del simbolo è:

\[f \epsilon F u. \implies: x \epsilon u. \implies f \epsilon v \]

dire che \(f \) è un e funzione degli \(u \), significa dire che, comunque si prenda \(x \) nella classe \(u \), sempre \(f x \) è un individuo della classe \(v \). La classe \(u \) è il campo in cui è definita la \(f \); i valori della funzione \(f \) appartengono al campo \(v \), senza necessariamente riempiere tutto.

Per esempio si ha:

\[\sin \epsilon Q f q, \]

che significa:

\[x \epsilon Q \cdot \cdot \cdot \sin x \cdot \cdot \cdot q. \]

Per indicare la derivata, al simbolo \(d \) di Leibniz, preferisco la lettera \(D \), più evidente, adottata da Arborgast nel 1800, poi abitualmente da Cauchy (Formula pag. 304). Allora si ha per esempio:

\[x \epsilon Q \cdot \cdot \cdot D \sin x = \cos x, \]
che si legge: *se x è una quantità (costante o variabile), si ha che la derivata del \(\sin \), pel valore \(x \), vale \(\cos x \). Al posto di \(x \) posso mettere un numero qualunque, per esempio 0; essendo vera l’ipotesi, poiché \(0/0 \) si sopprime, e risulta:

\[
D\sin 0 = \cos 0 = 1.
\]

La scrittura \(D\sin x \), o in generale \(Df(x) \), contiene tre segni: \(D, f, x \). La successione di tre segni \(abe \) può essere decomposta colle parentesi in due modi: \((ab)e\) e \(a(be)\). La scrittura \(D\sin x \) deve essere intesa decomposta in \((Df)x\), \(f \) derivata della funzione \(f \), pel valore \(x \), e non già in \(D(f)x \), derivata del numero \(fx \), che non ha senso. Per esempio \(D\sin 0 \) significa \(D\sin 0 \), o \(\cos 0 \), e non già \(D(\sin 0) \), cioè \(D0 \), che non ha senso.

Se all’operazione funzionale \(D \) diamo la forma d’un punto superiore, secondo Newton, o d’un accento a destra, secondo Lagrange, l’osservazione rimane. La scrittura \(f'(x) \) di Lagrange significa \(f'(x) \), e non \(f(x) \). E pare che sia appunto per indicare che \(Df(x) \) (Arbogast) o \(f'(x) \) (Lagrange) si debbano interpretare \((Df)x \) e \(f'(x) \), che alcuni autori, dopo il 1823 scrivono \(Df(x), f'(x) \).

Invece di \(D\sin x \) si potrà scrivere \(\sin x \), ma non \(D(\sin x) \); questa deve sempre essere accompagnata dalla spiegazione: \(\sin x \) non indica già un ente che dipende da \(x \), come le parentesi indicano, ma bensì... Nella formula \(D(\sin x) = \cos x \), posto \(x = 0 \), si ha: \(0 \neq 1 \), formula senza senso.

Anche la scrittura \(Df(x) \), che si deve leggere *noi scriviamo le parentesi attorno alla \(x \), per indicare che esse hanno attorno al gruppo \(Df \), presenta difficoltà e complicazioni del tutto inutili; essendo una convenzione contraria alle convenzioni fatte sulle parentesi in matematica elementare. Secondo questa convenzione generale, l’operazione serve a raggruppare più segni; entro parentesi non si può trovare una lettera sola. Chi scrive \(Df(x) \) invece di \((Df)x \), dovrebbe anche scrivere \(abe(c) \) invece di \((abc) \).

Chi scrive colle parentesi \(f'(x) \), dovrebbe, per uniformità, anche scrivere \(\sin(x) \), \(\log(x) \), ed \(f(x + h) \), con doppia parentesi, perché già una parentesi serve a raggruppare i tre segni \(x, +, h \).

Queste parentesi parasite allungano le formule, ed obbligano ad accompagnarle con spiegazioni in linguaggio comune. Ma in un gran numero di formule completamente scritte in simboli, producono confusioni ed anche equivoci. Però gli autori che più curano la forma dei simboli, sopprimono queste parentesi. Per esempio, Hamilton, *Elements of quaternions*, 1849, tom. 1, a pag. 463, ove comincia a parlare di funzioni, scrive ancora \(f(x) \), secondo l’uso comune, ma subito a pag. 465 e successive scrive \(f(x) \).

E non servì mai le parentesi trattandosi di quaternioni; le parentesi inutili complicherebbero molto questa teoria, profonda pei concetti, ed elegante per la forma simbolica.

Ecco in breve, la storia delle parentesi attorno alla variabile. Prima di Lagrange non si scrisse mai nelle formule la variabile; le lettere \(x, y, z \) hanno un significato oscillante fra caratteristica e valore d’un’algebra. Questa notation è ancora in uso oggi, promiscuamente colle notazioni posteriori, in uno stesso libro, e qualche volta anche in una stessa formula.

Lagrange, nell’opera citata del 1797, introduce la notation \(f(x) \), dove distingue la *caratteristici*, \(f \) dal valore della funzione \(f(x) \). Ma già in quest’opera, a pag. 66, trattandosi d’un’algebra \(F(x, y) \) di due variabili, si incontra la notation \(F(\varphi) \) per indicare la derivata \(* \) prises relative a y seul \(\varphi \), ciò che oggi molti scrivono \(F_{\varphi} \).

Parseval, nelle * Mémoires de l’Institut*, t. 1, anno 1798, oltre alla notation, ancora in uso, \(\mu \cdot \mu \) con indice \(\nu \), per indicare il valore della funzione \(\mu \), rispondente al valore \(\nu \) della variabile, scrive pure, per lo stesso scopo, \(\nu \cdot \nu \), ove le parentesi attorno ad \(\nu \) stanno per avvertire che non si tratta d’un potenza; e scrive poi \(\varphi(\varphi) \), ove le parentesi avvertono che non si tratta d’un prodotto aritmetico, ma bensì di ciò che oggi chiamasi prodotto funzionale.

Cauchy, nel 1815 (Mém. pubblicate nel 1827) usa con regola uniforme le parentesi attorno alla variabile; e quest’uso va in seguito diffondendosi.

Chi vuole chi le formule matematiche dicano tutto, senza bisogno di addizioni verbalì, non può dare ad un segno due valori. L’attribuire alle parentesi, oltre alla funzione di raggruppare più segni, ancora un’altra funzione, è come il voler fare un’aritmetica decimale, in cui le cifre 6 e 9 siano rappresentate da uno stesso segno.
La formula già vista:

\[x \in \mathbb{Q} \land D \sin x = \cos x, \]

ove si consideri l'uguaglianza delle funzioni (Formul. pag. 81 prop. 1 - 6), si può scrivere:

\[D \sin = \cos. \]

Se, con Hamilton, indichiamo con \(^* \exp \), la funzione esponenziale, cioè poniamo \(\exp x = e^x \), potremo scrivere:

\[D \exp = \exp. \]

Se con \(\log \) intendo * logaritmo d'un numero positivo *, e con \(\int \) intendo reciproco, si avrà:

\[D \log = \frac{1}{x}. \]

Se \(\frac{1}{x} \) vale * reciproco *, \(\frac{1}{a} \) vale * reciproco di \(a \), \(\frac{1}{b/a} \) vale il prodotto di \(b \) per il reciproco di \(a \), che si indica abitualmente con \(\frac{b}{a} \), notazione la cui esecuzione tipografica costa tre volte quella della \(b/a \).

Se suppongo che \(x \) sia funzione reale di variabile reale, \(x \in \mathbb{R} \), siamo anche tentati di scrivere:

\[D \sin x = \cos x \times D x \]

ove \(D \sin x \) indica \(D (\sin x) \), e non \(D (\sin) x \), il quale ultimo vale solo \(\cos x \).

Se invece di \(D \) leggo \(d \), ho le note formule sui differenziali, come si trovano scritte da Leibniz.

E quindi siamo indotti a ritenere che le lettere \(x, y, z, \ldots \) di cui Leibniz prendeva i differenziali, e Newton le flussioni, siano delle funzioni, cioè esattamente dei \(\mathbb{R} \).

Però formule del tipo dell'ultima scritta non si trovano nel Formulario; esse sarebbero luogo ad equivoci. Invero nel calcolo funzionale, il prodotto, o successione di due funzioni \(f, g \), p. es. \log \sin, ha già un senso, la funzione \(f \) della funzione \(g \), o il logaritmo del seno; e non possono più assumere quello di prodotto aritmetico dei valori di \(f \) e di \(g \). Così \(f^2 \) indica \(ff \), cioè

la \(f \) della \(f \), e non la funzione il cui valore sia il quadrato aritmetico del valore di \(f \); \(\sin^2 x \) indica \(\sin x \), e non \((\sin x)^2 \).

Scriveremo \(\sin^2 x \) per indicare \((\sin x)^2 \), e, dicendo Gauss, * ganz gegen alle Analogien *.

Per eliminare questo equivoco, senza bisogno di dire col linguaggio comune il senso delle formule, ma in modo che le formule esprimano da sé il loro significato, basterebbe distinguerle, con segni speciali, i prodotti aritmetici dai prodotti aritmetici.

Ma è più semplice lo scrivere esplicitamente la variabile indipendente.

Se \(f \) è (la caratteristica d')una funzione, e \(e \) una lettera (variabile come ogni lettera dell'alfabeto, che non sia cettuta a simbolo, come i numeri \(e, \pi \), con \(f(\pi) \) intenderemo la stessa \(f \). Questo simbolo \(x \), leggasi * variando *, permette di tornare dal valore della funzione alla caratteristica della funzione, e si userà quando l'espressione che contiene \(x \) non abbia ancora, e si voglia ridurre ad avere, la forma \(f(x) \).

Per esempio, se pongo \(f(x) = x^2 \), potrà ricavare \(f = x^2 + x \); e siccome \(x^2 + x \) si può leggere * quadrato di \(x \), ne risulta che \(x \) rappresenta la funzione * quadrato di \(x \).

Allora non c'è pericolo di confondere \(f(x) \) con \(f(\pi) \), prodotto funzionale di \(f \) e \(\pi \), colla funzione \(h = (f(\pi)) \), che dà \(x = (f(\pi)) \).

Per vedere come funzionano le parentesi fra i simboli di derivata, di funzione, e di numero, riproduco l'enunciato del teorema sulla derivata di funzioni di funzioni, dal Formul. pag. 281.

\[u, v \in \mathbb{R}, f, g \in \mathbb{R}, x \in \mathbb{C}, \mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathbb{R} \times \mathbb{R}. \]

\[D(f g) x = D(f(\pi x) \times D g) x \]

** Supponiamo che \(u \) e \(v \) indichino due classi di quantità, che \(f \) indichi una quantità funzione definita nella classe \(u \), e che \(g \) sia un \(u \) funzione dei \(v \), cioè sia \(g \) un'altra funzione dei \(v \), i cui valori appartengano alla classe \(u \). Prendiamo un \(x \) nella classe \(v \), e che appartenga anche alla classe derivata di \(v \), cioè sia infinitamente prossimo ad altri \(v \); ciò è necessario per poter parlare di \(D_{\pi x} g \). Supponiamo poi che \(g(x) \) valore corrispondente ad \(x \) di \(g \), il quale valore è necessariamente un \(u \), appartenga
alla classe derivata di u. Supponiamo infine l’esistenza della derivata di f, nel valore y, e della derivata di g nel valore x. In tale ipotesi, si ha la formula scritta.

Ricordiamo che per le convenzioni già fatte sulle parentesi $D(f(y))$ vale $[D(f(y))]_x$, e $D(g(x))$ vale $(Df)(g(x))$.

Nella formula ora scritta, posso al posto di f e g porre funzioni speciali; per es., \log e \sin; e ricordando che $D\log = 1$, e che $D\sin = \cos$, ho la formula

$$D(\log \sin) x = \sin x \times \cos x.$$

A questo risultato non si può arrivare con una sostituzione materiale nelle formule scritte nei comuni trattati di calcolo. La formula che comunemente si legge, è

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx},$$

la quale è intelligenibile nel giusto senso, se non vi si aggiunge a parole ovve $\frac{dy}{dx}$ indica la derivata di y rispetto ad x, e $\frac{du}{dx}$ indica la derivata di u rispetto ad x; considerando la y come variabile indipendente. Questa formula, che non è completa, poiché dove essere completata dal linguaggio comune, e anche contro la storia. La formula precedente in Leibniz è una vera identità aritmetica, poiché dy, dx, du hanno in tutti i posti ove sono scritti, lo stesso senso.

Se nella formula precedente

$$D(f(y)) = D(f(g(x))) \times Dg(x),$$

al posto di x leggo t, e al posto della funzione g leggo x, e la variabile t, invece di scrivere sullo stesso rigo, la scrivo come indice, secondo un uso di quei tempi e dei nostri, ottengo:

$$D(f(x)) = D(f(x)) \times Dx.$$

Qui sottintendo l’indice t; scrivo secondo Lagrange $f’$ invece di D, e secondo Leibniz, d invece di D, ed ho la formula ibrida nelle notazioni

$$d(f(x)) = f’(x) \times dx,$$

e, supposto dx non nullo:

$$f'(x) = \frac{d(f(x))}{dx}.$$

Qui conservo le parentesi attorno ad x, per ricordare che x sta per x. Questa formula rassomiglia molto alla comune

$$f’(x) = \frac{df(x)}{dx},$$

ove mancano le parentesi attorno ad fx. Se pongo

$$y = f(x),$$

la formula diventa $f’(x) = \frac{dy}{dx}$, e nessuna parentesi è necessaria, anzi quella attorno ad x è superflua.

Passiamo alla notazione dell’integrale. La definizione di integrale è più semplice di quella di derivata. Invero, la derivata si definisce con un limite, e in questa definizione compare la successione di segni logici \exists, \forall, \in; invece nella definizione di integrale compaiono solo i limiti superiore e inferiore di certe classi di numeri.

La definizione di limite superiore, dal Formul, pag. 107, è:

$$u \in C = Q, a \in Q, \exists \in C \in Q : a = \exists u = \theta a = \theta u.$$

Se u è una classe di quantità positive e se α è una quantità positiva, allora dicesi che α è il limite superiore degli u, quando la classe dei numeri minori di α coincide colla classe dei numeri minori di qualche u..

E se si vuol eliminare il simbolo \exists, che rappresenta la classe dei numeri fra 0 e 1, ovvero se si vuol ridurre il qualche del linguaggio comune ad essere espresso con sole operazioni logiche fondamentali, l’eguaglianza logica $\theta a = \theta u$ equivale alle due proposizioni:

$$x \in u, \exists a \leq a,$$

$$x \in \theta a, \exists a \in u, \exists y \geq (y > x).$$

Se x è un u, esso è sempre minore di α, non esclusa l’eguaglianza ..

Se x è un numero minore di α, si può determinare un numero della classe u, e y tale che soddisfi la condizione $y > x$.

Di queste due condizioni, la prima contiene un solo segno \int e la seconda la coppia \int.

In molti trattati sta definito l'integrale come il limite verso cui tende una somma; la definizione dell'integrale come il limite superiore dei valori della somma sta lentamente diffondendosi (Formul. pag. 343).

Cavalieri, nella geometria degli indivisibili, 1639, pag. 524, dice: "tutte le linee del triangolo \int, di tutti i quadrati del triangolo, invece degli attuali \int integrale dell'ordinata. o del quadrato dell'ordinata, del triangolo \int, o dei simboli comuni $\int x dx$, $\int x^2 dx$. (Formul. pag. 352).

Carini, Wallis, nel 1665 dice: "radices quadratiae universales \int, invece del nostro $\int x dx$. (Formul. pag. 356). Mercator nel 1668 (Formul. pag. 246), dice: "summa quadrato in $\int x^2 dx$: e summa invece dell'attuale integrale occorre in Kepler 1605, e altri (Formul. pag. 359, 246).

Pertanto, in conformità del linguaggio matematico di quel tempo, l'integrale o somma di tutti i valori della funzione f, si può indicare con Sf, ove S è l'iniziale della parola somma. I limiti dell'integrale si esprimono sempre con il linguaggio comune. Volendo esprimere la somma $\int f(x) dx$, dovremmo usare l'integrale dell'ordinata $\int f(x) dx$, mentre l'ascissa x varia nell'intervallo a $\int b$$. Si avrà così (Formul. pag. 352):

$$S\left(\sin, 0^a \frac{\pi}{2}\right) = 1$$

\int l'integrale del seno, nell'intervallo da 0 a $\frac{\pi}{2}$ vale 1 \int.

Se invece di dare la caratteristica della funzione, diamo un'espressione che contiene x, ne dedurremo la caratteristica operando con $|x|$: quindi per esempio (Formul. 350):

$$m \epsilon \mathbb{Q} \cdot \int (x^n |x, \theta) = 1/(m + 1).$$

notazione del tutto conforme al linguaggio di Cavalieri, Wallis, Mercator, ecc.

La regola dell' integrazione per sostituzione \int (Formul. pag. 350) è:

$$a, b \epsilon \mathbb{Q} \cdot g, Dg = (qF a \beta b) \int, f = (q F g a \beta b) \int, S(f; g, x) = S(\int f g x \times Dg x | a, b))$$

* dette due quantità a e b, e una funzione g reale e continua, insieme alla sua derivata, nell'intervallo da a a b; e una funzione f reale e continua definita nel campo dei valori assunti da g (la quale f potrebbe anch'essa essere definita in un campo più vasto), si ha la formula scritta. Se, in modo analogo a quanto si è fatto per la derivata delle funzioni di funzioni, al posto di x leggo t come indice, al posto di g leggo x, e sottintendo i limiti, si avrà:

$$Sf = S\int f | x, Dx$$

e se qui sottintendo l'indice t, e scrivo d invece di D, si ha:

$$Sf = S\int f | dx$$

ove il secondo membro è tutto conforme alla notazione di Leibniz.

* La somma di tutti i valori della funzione f vale la somma di tutti i valori della funzione fx moltiplicata per la derivata di x, qualunque sia la funzione x d'una variabile arbitaria $. In altre parole, Sf secondo i primi matematici, diventa $S\int f | dx$, ove si lasci indeterminata la variabile indipendente.

Leibniz, per la somma, scrisse una s minuscola; per es. lettera a Wallis, 29 martii 1697: "ubi s significat Summatiorem, et d Differentiationem \int. La s minuscola si è ingiungitosa in maiuscola (Lagrange 1760), e poi oltre.

Confrontando la notazione del Formulario $S(e^x | x, 0^{-1})$ con quella moderna equivalente $\int e^x dx$, si è indotti a ritenere che il segno d stia per indicare la variabile d'integrazione, ed abbia il valore del nostro segno $\begin{array}{l}
\end{array}$. Ed effettivamente ora il segno d nell'integrale sta puramente per indicare la variabile d'integrazione; ma in origine esso rappresentava la differenza, o derivata.
I limiti poi, seritti in basso e in alto dell'integrale, e intro-
dotti da Fourier (Mém. 1815), non rispondono all'idea primiti-
tiva; invero \(f(x^n|x, 0^-1) \) vale l'\(\int x^mdx \), ma non fra i limiti 0 e 1,
beni fra i limiti della variabile indipendente, cui corrispondono
i valori 0 e 1 della \(r \).

Le cose dette precedentemente sono molto contrarie all'
opinione e uso comune; e questa è la ragione per cui scrivo
il presente articolo. Però non sono tutte nuove; perché altri
già si occuparono delle notazioni del calcolo infinitesimale.

Ed è assolutamente necessario riportare qui le parole di un
illustre matematico e filosofo, che una morte immatura rapi
recentemente alla scienza; seguiranno brevi note.

H. Potier, La notation différentielle et l'enseignement (L'En-
seignement mathématique, 1899, pag. 106).

* Dans un article très intéressant de M. H. Laurent, sur
les mathématiques spéciales en France, je lis la phrase suivante:
* Ce n'est pas, je pense, ici qu'il convient de montrer combien
la notation différentielle est plus commode que celle des dé-
rivées; c'est aux gens compétentes que je m'adresse et non à
des élèves, et je pense que personne ne contestera la hante
portée philosophique de la doctrine différentielle. Je ne dirai
pas que j'ai la cette phrase avec étonnement; car elle exprime
une opinion assez répandue; mais, en ce qui me concerne, je
conteste absolument les avantages de la notation différentielle
et je crois qu'on ne doit l'enseigner aux débutants que quand
ils sont déjà familiarisés avec la notation des dérivées. La no-
tation de Leibniz, dit M. Laurent, est plus commode que celle
de Lagrange. Pourquoi plus commode? J'en cherche les raisons
et je n'en trouve que deux:

1° Si on emploie les accents pour représenter les dé-
rivées, on sera privé de cette ressource pour distinguer les
unes des autres des quantités analogues, mais différentes; on
ne pourra plus dire, par exemple: soient \(x, y, z \) et \(x', y', z' \) deux
points dans l'espace;

2° Pour faire connaître la variable par rapport à la-
quell one on différentie, il faut affecter les lettres d'indices qui
peuvent devenir génants pour le typographe si la lettre porte
déjà d'autres indices pour une autre cause.

* Ce sont là des inconvénients tout matériels, tout exé-
rieurs et qui peuvent être compensés par des avantages de même
ordre, tel que le suivant:

* Je veux représenter la valeur que prend la dérivée de
\(f(x) \) pour \(x = 0 \); je n'ai aucun moyen de le faire avec la no-
tation de Leibniz; avec celle de Lagrange je n'ai qu'à écrire
\(f'(0) \) [Nota 1].

* Mais, dira-t-on, c'est là prendre la question par le petit
côté. Que sont ces considérations purement matérielles auprès
de la haute portée philosophique d'une notation qui rappelle
a chaque instant la définition, le sens profond des quantités
que l'on a à manier? Hélas, elle ne les rappelle que trop, et
voulait mieux les rappeler moins que de les rappeler im-
parfaitement. Neuf fois sur dix, on n'évitera les erreurs qu'en
tâchant d'oublier la signification primitive de ces symboles;
c'est ce que je vais montrer bientôt.

* Quant à moi, j'emploie d'ordinaire la notation différen-
tielle, d'abord parce que c'est la langue que parlent la plupart
de mes contemporains et ensuite à cause des petites raisons
matérielles que j'ai exposées plus haut. Mais si j'écris en dif-
férentielle, le plus souvent je pense en dérivées [2]. J'ai dit
que la notation différentielle est imparfaite et nous expose à
erreur; c'est ce qu'il me reste à démontrer.

* Tout va bien quand on se borne aux différentielles du
premier ordre et quand il n'y a qu'une variable indépendante.
Oh alors, j'apprécie sans réserve tout ce qu'on peut dire au
sujet de la portée philosophique du symbole leibnizien et de
ses avantages.

* Mais, dès que l'on passe aux dérivées du second ordre,
on nage dans l'absurdité: soit \(x \) une fonction d'une variable \(y \)
qui est elle-mêmes fonction de \(x \); j'écris:

\[
\frac{d^2x}{dx^2} = \frac{d^2x}{dy^2} \frac{dy}{dx} + \frac{dx}{dy} \frac{d^2y}{dx^2}. \tag{3}
\]

* Dans cette formule j'écris deux fois \(d^2x \), et ce symbole a
dans le membre second, il signi-
fait que si je donne à \(y \) deux accroissements successifs \(\varepsilon \)
ifie que si je donne à \(y \) deux accroissements successifs \(\varepsilon \)
la fonction \(x \) subit deux accroissements successifs \(dx + d^2x \).

* Dans le premier, il signifie que si je donne à \(x \) deux ac-
croissements successifs égaux, d’où résultent pour \(y \) deux ac-
croissements successifs indépendants, la fonction \(z \) subit deux ac-
croissements successifs \(dz \) et \(dz = dz + \frac{dz}{dy}dy \).

La difficulté s’aggrave si on a plusieurs variables indé-
pendantes ; j’écrits :

\[
dz = \frac{dz}{dx}dx + \frac{dz}{dy}dy.
\]

La encore nous avons trois fois le symbole \(dz \) avec trois significations différentes. La première fois \(dz \) représente l’ac-
croissement subi par \(z \) quand \(x \) et \(y \) se changent en \(x + dx \) et \(y + dy \) ; la seconde fois l’accroissement de \(z \) quand \(x \) et \(y \) se changent en \(x + dx \) et \(y \) ; la troisième fois l’accroissement de \(z \) quand \(x \) et \(y \) se changent en \(x \) et \(y + dy \).

Que de pièges à éviter ! Aussi les débutants ne les évit-
tent-ils pas. J’ai vu un élève intelligent et déjà avancé exposer comme il suit la théorie de la vitesse du son, en masquant seulement par quelques artifices ce que sa démonstration avait de choquant.

Nous avons à intégrer l’équation

\[
\frac{dx}{dt} = a^2 \frac{dz}{dx^2}
\]

je divide par \(dz \) et je multiplie par \(dx^2 \) ; j’ai :

\[
\frac{dx}{dt} = a^2
\]

d’où :

\[
\frac{dx}{dt} = \pm a
\]

ce qui prouve que le son peut se propager dans les deux sens
avec la vitesse \(a \). — C’est singulier, répondait l’examinateur,
excellent physicien que je ne veux pas nommer ; votre démon-
stration est bien plus simple que toutes celles que je connaissais ;
et il lui donna la note 19.

Si je voulais être méchant, il ne serait pas difficile de
trouver des erreurs analogues dans des livres imprimés.
infiniment petita. On comprendra ainsi facilement la théorie des petites erreurs, si importante pour la pratique.

* En résumé, en mathématiques spéciales, on doit employer presque exclusivement la notation de Lagrange; on fera connaître aux élèves les différentielles premières, en insistant surtout sur le cas où il n'y a qu'une variable indépendante.

* Si on aborde le cas où il y en a plusieurs, on se servira exclusivement de la notation de Lagrange pour les dérivées partielles; on n'écrira jamais:

$$df = \frac{df}{dx} \, dx + \frac{df}{dy} \, dy$$

mais

$$df = f_x \, dx + f_y \, dy$$

on s'abstiendra absolument de parler des différentielles secondes.

* A l'École polytechnique et dans les Facultés, on enseignera la notation différentielle et on l'emploiera de préférence.

[Nota 1.] Veramente Lagrange scrisse $f'x$ e non $f'(x)$. Alla notazione di Leibniz basta aggiungere il valore della variabile; cioè scrivere Df_x, o df_x, ove Leibniz scrive solo df.

[2] Siccome differenziali e derivate sono identici, secondo gli autori dei secoli scorsi, si pensa sempre nello stesso modo, sia pensando agli uni che alle altre.

[3] L'espressione della derivata seconda d'un'una funzione di funzione, coi simboli del Formulario, si scrive:

$$u, v \in C[a, b]. f \in F(u, v). g \in F(x). x \in R. \quad Df(g(x), D^2f(g(x)), Dg(x), D^2g(x) \in C[a, b]. \quad D^2f(g(x)) = D^2f(g(x)) \times (Dg(x))^2 + Df(g(x)) \times D^2g(x).$$

* Dati i due campi di variabilità u e v, ed f una quantità funzione definita un u e g un numero della classe u funzione dei v; se x è un numero della classe x, e della sua derivata seconda (e quindi della derivata prima; ciò è necessario, af

finché si possa parlare di derivate prima e seconda di f, e se gx è un numero della derivata seconda di u, ed esistono le derivate prima e seconda di f, pel valore gx, e le derivate prima e seconda di g pel valore x, allora sì ha la formula scritta...
M. G. A. Agnesi, *Institutioni Analitiche*, 1748:

"Si chiama differenza o flusione d'una quantità variabile quella porzione infinitesima, ecc."

Una quantità infinitamente piccola e costante, intesa come una quantità minore di ogni quantità assegnabile, è contraddittoria in sé stessa; poiché ogni quantità è maggiore della sua metà.

Una quantità infinitesima, e variabile, presenta le difficoltà già esposte a proposito della parola variabile. Dice un autore *apriamo un trattato di calcolo infinitesimale, o di fisica matematica; tutti i dx, dy, che a libro chiuso erano fissi, diventano variabili e si precipitano a zero; chiediamo il libro per riaprirlo all'indomani; tutti i dx, dy,... sono al loro posto!*

Enti infinitesimi, nel senso che appartengano ad una categoria di enti, comprendente le ordinarie quantità positive, sopra i quali enti siano definite le comuni operazioni e relazioni aritmetiche, e di cui uno sia minore d'ogni numero positivo, pur essendo maggiore di zero, non presentano alcun assurdo in se stessi. Furono studiati da numerosi autori; per es., da me nella nota *Sugli ordini degli infiniti*, nella R. Accademia dei Lincei, 12 giugno 1910. A questi infinitesimi costanti si riducono in sostanza gli infinitesimi variabili, bene espressi. Ma questi infinitesimi non sono necessari, anzi inutili, in un corso di Calcolo infinitesimale ordinario.

Però nulla impedisce di dire, ove lo si trovi comodo, che dx, dy, derivate di x, y, sono la misura degli incrementi momentanei o infinitesimi di x e y; e sopprimendo la parola misura, si potrebbe dire che dx, dy sono gli incrementi infinitesimi di x, y; benché dx, dy siano quantità determinate e finite.

In conclusione, Leibniz fu il primo ad introdurre i simboli funzionali d e e, che chiamò differenza e somma, e ne scrisse le regole fondamentali. Invece di differenza, si dice più tardi anche differenziale; Newton lo chiamò flusione, scrivendo un punto al posto di d; Lagrange lo chiamò derivata, e scrisse un accento invece di d; e contemporaneamente indicò esplicitamente la variabile indipendente. Arbogast e Cauchy mutarono d in D, conservando l'indicazione della variabile indipendente.

Il simbolo s di somma fu chiamato integrale da Joh. Bernoulli nel 1690 (Formul. pag. 342) e si ingigantì in \int nell'ultimo secolo.